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ABSTRACT

Remotely sensed data produced by hyperspectral imagers contains hundreds of
contiguous narrow spectral bands at each spatial pixel. The substantial dimensionality
and unique character of hyperspectral imagery requires display techniques that differ
from traditional image analysis tools.

This study investigated the appropriate methodologies for displaying
hyperspectral images based on the physical principles of human color vision and a
generalized set of linear transformations. Principal components (PC) analysis is a
powerful tool for reducing the dimensionality of a data set, and PC-based strategies were
explored in creating a broadly applicable image display strategy. It is shown that the
invariant display strategy and generalized eigenvectors developed within this study offer
a first look capability for a wide variety of spectral scenes. PC transformations utilizing
this generalized set of eigenvectors allow for ‘real time’ initial classification. Detailed
investigation of the relationship between the PC eigenvectors and dissimilar image
content shows that this strategy is robust enough to provide an accurate initial scene

classification.
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EXECUTIVE SUMMARY

An invariant methodology has been developed in response to the need for
coherent and consistent display of the hundreds of contiguous narrow spectral bands
present within hyperspectral imagery. The methodology builds upon traditional
hyperspectral imagery processing techniques and provides a more robust first look
capability for unsupervised classification.

This study investigated the appropriate techniques for displaying hyperspectral
images based on the physical principles of human color vision and a generalized set of
linear transformations. Principal components (PC) analysis reduced the dimensionality
of a data sets, and PC-based strategies were explored in creating a broadly applicable
image display strategy. Analysis of hyperspectral images and display strategies were
accomplished utilizing MATLAB and ENVI software.

From analysis and comparison of imagery data from Davis-Monthan Air Force
Base to image data obtained from similar and dissimilar scenes, it is clear to see that for
comprehensive analysis, it would be appropriate to maintain scenes such as Davis-
Monthan (which consists of desert background) within one group and scenes such as
Jasper Ridge (forest) and Lake Tahoe (forest/water) within another group. But, for first
order unsupervised classification, the first few eigenvalues and associated eigenvectors
which contain the largest amount of scene variance can appropriately represent a scene.
Extending this concept further, it is clear that a generalized set of eigenvectors can depict

any scene content. The average eigenvectors investigated in this study provides such a

XV




basis and can be further improved upon with an increase in the number of data sets
utilized.

A principal component-based mapping strategy provides an easy way to perform
first order unsupervised display. The inclusion and utilization of generalized
eigenvectors decreases the overhead required to perform first order display and will allow
for ‘real time’ classification of hyperspectral imagery. By visually inspecting the
resultant image, an analyst can then direct attention to appropriate areas of the scene for
further processing without the time consuming requirement of calculating the scene
specific statistics. The generalized PC and RGB transformation eigenvectors utilized in
this study can be applied to a broad range of spectral imagery classes. These
eigenvectors can become even more robust as the number of ‘averaged’ scenes is
increased.

The 1% PC will always be related to the mean solar radiance, but the 2" 3" and
subsequent PCs depend on the specific contents of the image. However, it is also shown
that only the first three PCs are required for a color mapping corresponding to human
color vision. It remains to be investigated whether or not the RGB transformation of the
HSV image presented here can be arranged so that materials are presented in a
straightforward manner, i.e. water always mapped to blue, vegetation to green, etc, vice
having the dominant scene constituent set the base hue of the image.

The presentation strategy discussed here is best suited to broadscale geographical
classification, not for identifying small, isolated targets. However, objects and variances
within the scene which occur only at a few pixels in an image and thus have little effect

on the overall covariance matrix and do not contribute significantly to the 2™ and 3™ PCs,
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do appear to be discernable in this mapping strategy. For this reason, this aspect of the
mapping strategy merits further investigation.

The invariant display strategy and generalized eigenvectors presented here is
offered as a way to have a first look at a wide variety of spectral scenes. By performing a
PC transformation with these eigenvectors and analyzing the three most significant PCs,

an initial classification decision can be made ‘real time’.
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I. INTRODUCTION

The introduction of imaging spectroscopy with the Airborne Imaging Spectrometer
in 1982 established a powerful new tool for the earth sciences, but also created a
fundamentally new class of data requiring new approaches to information extraction and
display methodologies (Vane and Goetz, 1988, p.1). This new class of data provides a
representation of the spectral character of materials on the ground and will be referred to
as spectral imagery throughout the study. Hyperspectral data, a particular type of spectral
imagery, is produced when solar electromagnetic energy reflected form the earth’s
surface is dispersed into many contiguous narrow spectral bands by an airborne
spectrometer (Vane and Goetz, 1988, p. 3). Each picture element (pixel) of a
hyperspectral image can be thought of as a high resolution trace of radiation versus
wavelength, or a spectrum (Rinker, 1990, p. 6). The characteristic wavelength dependent
changes in the emissivity and reflectivity of a given material can be related to the
chemical composition and types of atomic and molecular bonds present in that material
(Gorman, et. al., 1995, p. 2805). The chemical composition of different materials is thus
manifested in the spectral properties of these materials, and can serve as a means of
differentiating materials observed in a hyperspectral image with great detail.
Analysis and display of hyperspectral imagery is complicated by several factors.
The first is the volume of data inherent in a hyperspectral image. A typical 224-band
Airbome Visible/Infrared Imaging Spectrometer (AVIRIS) image contains approximately
134 Mbytes of data (Roger and Cavenor 1996). Algorithms for processing data sets of
this magnitude must be computationally efficient to be of any service and if possible,

must seek to eliminate redundant data prior to processing. The second factor is that the
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radiances recorded at the spectrometer output are subjected to noise, additive and
possibly multiplicative (Tyo, et. al., 2000), from the atmosphere, sensor instrumentation,
data quantization procedure, and transmission back to earth. The cumulative effect of
these noise terms is a spectrum that has been corrupted by noise which impacts
meaningful image representation and target detection becomes even more complicated. It
is here where a signal processing point of view is helpful, as the problem has now
become the classical signal in noise problem. The third factor is that because of the finite
spatial resolution of the imaging spectrometer and the actual ground scene, the observed
spectrum for a pixel may not be that of a single material, but could be a mixture of
several different materials which exist within the spatial dimensions of the sensor’s -
ground instantaneous field of view (GIFOV). Although the third factor is primarily
concerned with target detection and classification, it will impact the overall display
representation. The sea level GIFOV of the AVIRIS sensor at sea level is nominally 20m
x 20m (Farrand and Harsanyi, 1995, p. 1566) and the implication is that several materials
could contribute to the observed spectrum for that pixel depending on the complexity of
the ground scene. A fourth factor that complicates analysis efforts is that spectra of the
same type of material may appear very different. This variability within the spectra of a
species or target class dictates a statistical approach vice a deterministic one. (Tyo, et. al.
2000, Kerekes, et. al., 2000)

There are many types of data processing techniques which address the unique
issues raised by hyperspectral imagery. Many grew out of earlier techniques which had
been successfully applied to multispectral imagery, the precursor of hyperspectral

imagery. Others have a foundation in the discipline of pattern recognition. Another
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approach, which is naturally suited to the task of detecting signals in the presence of

noise and multiple interfering signals, is based on signal processing. The signal
processing approach efficiently handles the data by viewing it from the vantage of
vectors and matrices, performs processing by various linear transformations and will be
the methodology utilized in this study.

The major goal of this study is to expand the knowledge and methodology of
hyperspectral image display strategies and a secondary goal is to provide a mapping
strategy that can be used on a wide variety of hyperspectral images. This study is
organized in a manner that will facilitate the goal of an orderly approach to invariant
display strategies for hyperspectral images. Chapter II presents an overview of
hyperspectral imagery and introduces the statistical signal processing approach to data
analysis. Chapter III describes human vision and relates it to a statistical signal
processing approach. This chapter also details why human visual perception must be
accounted for in any display methodology. Chapter IV details the methods utilized in
this study for the processing of hyperspectral image files and identifies specific types of
data that it is applied to. Chapter IV also contains an analysis of the various display
strategies found to be most effective for a variety of hyperspectral image types. Chapter
V concludes the study and seeks to sélidify the connections between specific

hyperspectral data sets and the most appropriate display strategies.
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II. BACKGROUND

A. PROBLEM STATEMENT

Within the past several decades, many strategies for target identification, material
classification, terrain mapping, etc., have been developed to exploit the information in the
hundreds of spectral samples taken at each pixel in a scene. Once a classification
algorithm or image processing tool has been applied to a spectral image, the resulting
processed data is invariably mapped into a pseudocolor image. While many display
methodologies are quite powerful, there is no standard tool used to render spectral
imagery in false-color images for presentation.

Currently, the use of false color displays is generally reserved as a tool for
presenting data after processing. Once a scene has been classified by a particular
algorithm, a specifically tailored colormap is created to emphasize the performance of the
classification system. Commonly, in an attempt to distinguish scene elements, one
displays the data as an initial processing step, but rarely is visualization in and of itself
used as a tool that allows the spectral analyst to perform identification before cueing
more powerful processing strategies. Most colormaps in use today have been developed
based on the mathematics of spectral images without considering the workings of the
human vision system. It has been demonstrated that failure to consider how the observer
processes data visually can make information difficult to find in an image, even when the

data are clearly available. (Tyo, et. al. 1998)




B. HYPERSPECTRAL IMAGERY OVERVIEW

In order to fully understand the need of an invariant false-color mapping strategy,

a review of the historical perspective and paradigms in the analysis of hyperspectral
images is necessary. Figure 2.1 illustrates the major image analysis paradigms over the
past seventy years. This is not an all inclusive history, but a quick synopsis of the major
ideas behind hyperspectral imagery analysis. Note that there is no visual representation
strategy within any of the paradigms.

Photointerpretation (1930s)

: 2-D Images

. good qualitative analysis (human)
: poor quantitative analysis

Digital Imagery (1960s)

: 2-D Images

: Pattern Recognition, Computer Vision
: Emphasis on Classification Techniques

Multispectral Imagery (1970s)

: 3-D Images

: Principal Components Analysis
: Land Usage Classification

Hyperspectral imagery (1980s)

: 3-D

: Need to reduce data dimensionality

: Software Packages with Spectral Libraries
: Need efficient processing techniques

Figure 2.1: Major Imagery Analysis Paradigms.

The analysis of imagery began in the early part of this century with

photointerpretation. The analysis of aerial photographs to extract information of interest

was a strictly human operation. The strength of the human element in interpretation was




the ability to recognize large scale patterns (Richards, 1986, p. 75) and make inferences
based on these patterns. However, the weakness of human image interpretation 1s the
inability to accurately quantify the results in a consistent manner.

The computing power that began to become available in the 1960’s and the ability
to represent data in a digital fashion provided the impetus for automation of the
photointerpretation task into digital imagery analysis. Here, the computer was
programmed to work within narrow parameters, such as counting the number of
occurrences of certain brightness values, a job that it performed more quickly and
accurately than any human analyst. The fields of pattern recognition and computer vision
became important, and a statistical description of the data was needed to form the basis of
classification schemes which could accurately determine the number of pixels in the
scene belonging to a certain class. Linear prediction and spatial principal components
analysis (PCA) were tools that assisted in the automated detection of a target in the two-
dimensional digital images.

The advent of multispectral imagery with Landsat data in the 1970’s added the
spectral dimension to the problem of imagery analysis. (i.e. If the number of spectral
samples at each pixel is N, there is now N times the amount of data for analysis.) PCA
played a significant role in reducing the dimensionality of the data (decrease from N
number of samples to M<N linear combinations) by exploiting redundancy within the
data and assisted in the classification of large land areas. The relationship between PCA
techniques and classification techniques was a sequential operation in that PCA was first
applied to an image to remove the redundant information or create a better class

separation before application of a classifier. This preprocessing application of PCA still
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continues today. It is important to note also that PCA in MSI and HSI is performed in the
spectral dimension while in pattern recognition and photography, it is performed
spatially.

The 1980’s and hyperspectral imagery ushered in a new challenge to the existing
methods of analyzing data. Hyperspectral imagery increased the number of spectral
bands from less than 10 to more than 200, increasing the volume of data by a factor of
20-50. Thus, data compression became an important concern. The search for new
techniques to deal with the large amount of information and commensurate amount of
redundancy prompted new views of the analysis paradigm. Ideas from the signal
processing community provided a means of handling the large amount of data and
confronting the mixed pixel problem. Software packages dedicated to the analysis of
hyperspectral imagery, such as ENVI, incorporated spectral libraries and found particular

interest in the geological remote sensing community.

C. DEFINITIONS

An understanding of the fundamental ideas behind the various spectral imagery
analysis techniques is important because it forms the basis for all imagery analysis and
image display methodologies. The fundamental ideas involve concepts from statistics,
linear algebra, and signal processing theory. Discussion of these ideas in the context of
spectral imagery sets the stage for the detailed discussion of display strategies that follow.

This section presents multispectral and hyperspectral images as a means of

further highlighting certain properties of the spectral concept. The images are also




characterized from a statistics view which assists in better understanding the image
content and the statistical principles used in spectral imagery analysis. Some concepts
from linear algebra and signal processing are defined to provide a framework through
which certain spectral imagery analysis techniques and display methodologies are
understood. These perspectives offer a means of defining key concepts that appear
throughout this study. An effort has been made to make these definitions simple yet
comprehensive through the use of illustrative examples.

1. Spectral Imagery

Spectral imagery is the acquisition of images at multiple wavelengths by
spectrometers onboard aircraft or spacecraft. Two primary classes of such measurements
* are the traditional multispectral images, as with those produced by the Thematic Mapper
(TM) radiometer on the Landsat satellites, and hyperspectral imagery, produced by
imaging spectrometers such as in the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) and Hyperspectral Digital Imaging Collection Experiment (HYDICE) systems.
Typical Landsat TM and AVIRIS images will be used here to introduce many of the
concepts needed for this study. These data sets will also be used to illustrate display
strategies in future sections. The Landsat TM scene in Figure 2.2 is a six-band, 640-pixel
x 400-pixel image of Canon City, Colorado which is provided with ENVI software on the
ENVI-DATA CD-ROM. The scene is an image of a city surrounded by mountains. The
six distinct image planes present in Figure 2.2 represent the various wavelength ranges
sensed by Landsat TM. Notice how objects which appear bright in one band may appear

dark in another band. The mountain ridgeline, found on the left side of the image,




illustrates this effect. Through this sort of contrasting, Landsat imagery offers a very
basic means of discerning the spectral character of a particular class of material.
A representative AVIRIS scene of Jasper Ridge, which is also provided on the

ENVIDATA CD-ROM, was chosen for comparison. The scene shows a biological

preserve surrounded by a small city. Data sets of this area are typically utilized for

vegetation analysis.

mm

il

Vgt
A=2.2153um
Figure 2.2: A Typical 6-Band Multispectral Image Produced by Landsat TM. (Note
different shadings between bands.)
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Figure 2.3 shows three representations of the hyperspectral image consisting of
300 samples, 250 lines, and 224 bands. This first image is a grayscale representation of
band 37, the second image is a red, green, blue composite formed using bands 176, 91,
and 31, and the third image is a red, green, blue composite formed using bands 25, 120,
and 200. The Jasper Ridge representation in Figure 2.3 shows only a small subset of the

wide range of color mappings available to an analyst.

Figure 2.3: Jasper Ridge Color Representation. Panel a is an achromatic representation
of Band 37 (702.5nm). Panel b is a R-G-B representation with Red 2208.7nm, Green
1221.0nm and Blue 665.7nm. Panel c is a R-G-B representation with Red 606.4nm,
Green 1483.4nm and Blue 2268.4nm.

One way of visualizing data that has two spatial and one spectral dimension is as
a cube. Due to ‘finer’ resolution of spectral frequencies, the ability to identify materials
based on spectral detail is more effective with hyperspectral imagery as opposed to
multispectral imagery (Goetz,1995). Figure 2.4 emphasizes the high spectral resolution
of hyperspectral data by extracting information in the spectral dimension, or downward in
the axes of the cube. It shows the construction of an observed spectrum associated with a

particular spatial location, called a pixel vector.
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EACH PIXEL HAS

AN ASSOCIATED,
CONTINUOUS SPECTRUM
THAT CAN 8E USED TO
IDENTIFY THE SURFACE
MATERIALS

IMAGES TAKEN
S IMULTANEQUSLY
IN 100-200 SPECTRAL BANDS, o.a
INHERENTLY REGISTERED -

WAVELENGTH, zem

Figure 2.4: The Concept of a Pixel Vector. From Vane and Goetz, 1988, P.2.

The pixel vector is central to the discussion which follows, since the pixel vector may be
viewed as a unique signal associated with a material of interest. Figure 2.5 further
illustrates the pixel vector concept using randomly chosen observed spectra from the
Landsat and AVIRIS images. The fine spectral detail that can be discerned in the
hyperspectral image spectrum is a stark contrast to the coarse detail that comes from six
data points, as in the Landsat observed spectrum. The implication is that the
characteristic shape of the pixel vectors obtained using hyperspectral imagery allows a
more definitive identification of material based on unique spectral characteristics.

The hyperspectral sensors AVIRIS and HYDICE have spectral bands that are
configured to cover a range of 400 to 2500nm. The observations of the reflected energy
at the sensor are measured in terms of radiance, which has units of watts per square meter
per steradian, (Wm™sr™"). The spectral irradiance is how much power density is available
incrementally across the wavelength range and is measured in (WmZum™"). (Richards,

1986)
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Figure 2.5: Typical Pixel Vectors From Multispectral and Hyperspectral Images.

A significant portion of the spectrum imaged in the AVIRIS system is dominated
by solar energy reflected from the earth’s surface. This solar energy accounts for the
characteristic “hump” in roughly the 15™ to the 37™ bands (500nm-700nm). At times, it
is desirable to mitigate the effect of the dominant solar curve so that other spectral details
may be discerned. One means of doing so entails converting radiance measurements to
reflectance measurements by dividing the radiance observations by the scene average
spectrum. Other methods include the use of calibration panels, flat field calibration, and
numérical techniques (ATREM, etc.) The net effect is to normalize the radiance
measurements in such a manner that the solar bias is removed and the resulting
reflectance spectrum appears flatter. For the purposes of this study, raw radiance data
will primarily be utilized because analysis of this data will limit the amount of
preprocessing required and allow for a better understanding of overall scene

characteristics.
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2. Statistical Interpretation
In order to assist in the quantitative discussion of characterizing the data
statistically, we need to formally define the concept of the observed pixel vector. Assume

that the observed pixel vector x is a real valued random vector
x=| (2.1)

where the cofnponents {Xi,...,x} correspond to measured brightness values in each of L
spectral bands. Since a stochastic view of the data assumes that these vectors are -
random entities, one means of characterizing them is to describe their behavior using
statistical concepts. Exact statistical descriptions of their behavior are unavailable in
real applications, so we must rely on methods that estimate the statistics of the observed
random vectors.

There are three major statistical definitions of interest in this respect. The first is
the concept of expectation. The expectation of a random vector is called the mean or the
average value that the random vector assumes and‘is denoted as E{x}. The mean is also
called the first moment since it involves only the random vector itself and not products of
the components of the vector x (Therrien, 1992, p. 33). In using the observed data, it is
often desirable that the statistical expectation of the estimated mean equal the actual
mean. This is called an unbiased estimate of the mean. The framework for this
estimation is to view the spectral image or scene as a collection of N random pixel
vectors. This implies that the scene is comprised of N pixel vectors, each consisting of an

L-band spectrum. The unbiased estimate of the mean spectrum for the scene is given by:
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1 & .
m=—]Q Z} Xj=|" (2.2)

= :

my
where x; represents the spectrum of the ™ pixel of the scene. The mean spectrum vector,

m, of Equation 2.2 can also be interpreted as a L-dimensional vector with each
component representing the average brightness value over the entire image for one
particular band.

The second definition of importance in characterizing random vectors is that of
the covariance matrix. The covariance matrix is defined in vector and expanded

component form as:

>, =E{em)em)}=

E{(x1—m)*} E{(xi—-m)(x2—m2)} ... E{(xi—m)(x, —m,)}
E{(x2—m2)(x1— )} E{(x2—m2)*} e E{(x2=m2)(x, —m,)} 2.3)
E{(x, =m )(xi—m)}  E{(x, —m )(x2—m2)} ... E{(x,—m;)"}

where m is the mean vector of the entire image defined in Equation 2.2. The covariance
matrix is symmetric, and the elements of the main diagonal represent the variances
associated with each of the component variables of the random vector x. In the case of
spectral imagery, the variance is a measure of how the brightness value of a particular
band varies over all spatial image pixels and the covariance describes the scatter of pixel
points in the principal components vector space.

The covariance matrix is the set of second central moments of the distribution,

which are also referred to as moments about the mean since the mean component is
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subtracted from each random variable. The unbiased estimate of the covariance matrix is

generated by:

N
Sty Cmem @4)
where X; is again the pixel vector associated with the ™ spatial location (Richards, 1993,
p. 134). When the covariance of two random variables is zero, then the random variables
are said to be uncorrelated, which implies that those random variables were generated by
separate random processes (Leon-Garcia, 1994, p. 337). In the calculation of the
unbiased estimates of statistical quantities, the computational expense of the covariance
matrix for a large number of samples, N, must be balanced with the desired degree of
accuracy for the estimate. More samples imply better estimates, and in order to ensure
sufficient accuracy, the number of samples must be sufficiently large (Fukunaga, 1971,
p.-242).

The third statistical definition involves an issue that requires clarification
regarding the term “correlation” matrix. In signal proéessing terminology, the correlation
matrix stated as E{xx} is formed exactly as the covariance matrix, except that the mean
vector is not subtracted from the random vector x (Therrien, 1992, p. 33). Figure 2.6
demonstrates the concept of mean removal using the scatter plots of two bands of Landsat
data. The scatter plots are a representation of many two-dimensional random vectors
which have a two-dimensional mean vector. The subtraction of this mean vector from

every random vector results in a centering of the data about the origin. This introduces

negative numbers into the previously positive data values.
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Figure 2.6: Mean Removal Illustration With Scatter Plots.
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While the correlation matrix is more frequently used in signal processing where
zero mean signals are the norm, remote sensing uses the covariance matrix since negative

radiance values do not have a clear physical significance.
In statistical and remote sensing applications, the correlation matrix is usually

defined in terms of the covariance matrix. The i/ element of the statistical version of the

correlation matrix is:

= (2.5)

where o is an element of the covariance matrix and is the covariance between bands

and j in Z,, o;; represents the variance of the i" band of data, and the square root of

variance is defined as the standard deviation (Richards, 1993, p. 135).
The statistical and signal processing versions of correlation do not produce the

same matrix. The statistical definition produces a matrix which has a unit main diagonal

and can be represented as:

1 Pz ... Pw
21 1 sese 2N
R=|"" P (2.6)
P Prz 1

(Searle, 1982, P. 348). It is apparent that dividing the covariance matrix elements by
their standard deviations has the effect of reducing all the variables to an equal
importance since all have unit variance. The signal processing definition does not
produce a unit diagonal matrix, though it is symmetric. The off diagonal elements of Ry,
represented by p; are called correlation coefficients. They range between -1 and +1 n

value, and provide a measure of how well two random variables vary jointly by
18




quantifying the degree of fit to a linear model (Research Systems, Inc., 1995, p. 20-6). A
value near +1 or -1 represents a high degree of fit between the random variables to a
positive or negative linear model, whefeas a values near zero implies that the random
variables exhibit a poor fit to the linear model. The conclusion that may be drawn is that
a high degree of fit implies well-correlated random variables, whereas a correlation
coefficient of zero is indicative of statistically orthogonal random variables. We will
assume that we are dealing with the statistical definition of the correlation matrix, though
a more descriptive term for the “correlation” matrix might be the “normalized” or
“standardized” covariance matrix.

The definitions of statistical properties become clearer when they are linked to a
physically observable phenomenon. The next few illustrations attempt to show the large
amount of information revealed by the statistics of the data. Table 2.1 shows the

covariance and correlation matrices for the Landsat data of Canon City.

Covariance Matrix for Canon City TM Data

Band

1

2
3
4
5
6

B

Band 1
45.391430
54.157121
62.472157
48.824654
48318837
43.826169

Band 2
54.157121
69.760492
79.432844
64.610172
64.421129
57.616349

Band 3 Band 4
62.472157 48.824654
79.432844 64.610172
96.376932 77.863810
77.863810 100.500970
79.247686 74.711596
70.393457 57.981971

Band 5
48.318837
64.421129
79.247686
74.711596
87.056432
70.991722

Correlation Matrix for Canon City TM Data

O\Ul-bwt\)r—*g

d Band 1
1.000000 0.962418 0.944524 0.722881 0.768651 0.814786
0.962418 1.000000 0.968744 0.771633 0.826653 0.864049
0.944524 0.968744 1.000000 0.791159 0.865166 0.898138
0.722881 0.771633 0.791159 1.000000 0.798735 0.724444
0.768651 0.826653 0.865166 0.798735 1.000000 0.953025
0.814786 0.864049 0.898138 0.724444 0.953025 1.000000

Band 2

Band3 Band4

Band 5

Band 6
43.826169
57.616349
70.393457
57.981971
70.991722
63.739045

Band 6

Table 2.1: Covariance and Correlation Matrices of Landsat TM Data.
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In examining the Landsat covariance matrix, we see that the highest variance
results from band four, the lowest covariance is between bands one and six, and the
highest covariance is between bands two and three. The correlation coefficient is highest
between bands two and three and is lowest between bands one and four. We can draw
some conclusions from these statistics. First, band four has more variance, or contrast
over the scene, than any other band. Before we assume that this means that band four can
detect some sort of unique information better than other bands, we must ask if this
variance was caused by signal coming from the ground or if it was noise introduced by
our sensor or the atmosphere in that particular band. If we know the signal-to-noise ratio
of our sensor in band four then .we can answer the question. Signal-to-noise ratio (SNR)
is the ratio of signal power to noise power, and can be obtained using the variances as the
power. Second, band one exhibits the lowest correlation coefﬁcient'when compared to
all other bands. Again, before we assume that band one detects unique information, we
must ask about the signal-to-noise characteristics of band one. For example, if band one
were purely noise, then it would exhibit an even lower correlation with other bands,
perhaps even zero. This is because it is independent of the other bands, not because it
carries any information.

The scatter plot is another means of characterizing the statistics of the data by
visually presenting the two-dimensional distribution of pixels using two selected bands.
Two band combinations are shown in Figure 2.7. The scatter plot is a representation of
all of the two-dimensional random pixel vectors formed by the two bands of interest. By
plotting the data of one band against that of another, information regarding the statistical
similarity of bands may be inferred. The scatter plots for the Landsat image show a
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definite linear feature when a high correlation coefficient exists, as between bands two
and three. Thus, bands two and three are statistically similar, to the extent that there
appears to be a near linear relationship between their random variables. The correlation
coefficient of 0.9687 substantiates this observation. This is in contrast to the more
distributed shape for the scatter plot of band one data versus band four where the

correlation coefficient is .7229.

Canon City Scatterpiot, Bands 2 and 3
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Figure 2.7: Scatter Plots of Canon City Landsat TM Data Showing Highly Correlated
(2™ & 3 and Less Correlated (1% & 4”) Band Combinations.
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This graphically depicts the more independent and less correlated nature of the data in
band four, as evidenced by the lower correlation coefficient of 0.7229. The scatter plot
also clearly shows groupings of pixels that have the most variance and will form the basis
for the studies false-color mapping strategy.

In order to show the second order statistics of a hyperspectral image, another
visualization technique is introduced. With 224 bands, manually examining the
covariance matrix would be tedious, and comparing two bands at a time with scatter
plots would be similarly ineffective and time consuming. For hyperspectral data
statistics, the elements in the covariance matrices are assigned color values
corresponding to their value. The result is a color matrix which helps in explaining
trends. Figure 2.8 illustrates the covariance and correlation matrices for the radiance
data in the AVIRIS Jasper Ridge scene.

Covariance Correlation

50 100 150 200

Figure 2.8: Second Order Statistics of the AVIRIS Jasper Ridge Scene.

There are several notable features in the two matrices. In the radiance covariance
matrix, we see the effect of the sun on bands 50 to 70 manifested in the higher variance
and covariance values. This is because the covariance matrix is constructed in a manner
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that uses the absolute radiance values, which are very large in these bands for radiance

data. The correlation matrix of the radiance does not show this uneven weighting of
variances. Instead, the correlation coefficients closest to the main diagonal exhibit a
fairly similar value over all image bands, indicating that the correlation matrix has
normalized the variances and covariances with respect to their standard deviations. The
high values in the vicinity of the main diagonal are indicative of an important
characteristic of hyperspectral imagery, namely the high correlation between adjacent
bands. Both of the matrices show the effects of the absorption bands as areas of very
low covariances and correlation coefficients. This is intuitively pleasing, since the
absorption bands should be very uncorrelated with all other bands. These dark vertical
and horizontal features on the matrices represent the presence of atmospheric absorption
features and are a good illustration of the effect of additive noise. The bands
corresponding to these absorption features have had the “signal” drowned out by
“noise” introduced by the atmosphere. This is multiplicative in nature, the additive
noise is introduced at the sensor. Note also that the main diagonal trace is specifically
Eczii and represents the variance associated with each band.

The blocky, segmented nature of the second order statistics matrices reveals
important details about the scene. The low covarlances in the absorption bands are
easily explained because the brightness values in those bands are so statistically
different than all other bands. More subtly, these matrices show the degree of difference
or similarity between the brightness values in other parts of the observed spectra.

In order to illustrate this concept, a Davis-Monthan Air Force Base HYDICE

radiance data set is introduced. Figure 2.9 shows the covariance and correlation
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matrices for this data set. The scene is a good contrast to the Jasper Ridge image

because the predominant background material is sand instead of vegetation.

Figure 2.9: Second Order Statistics of a HYDICE Davis Monthan Scene.

Recalling the plots of various pixel vectors seen in Figure 2.5, note how the
spectrum of the vegetation sharply spiked up at wavelength 700nm whereas the
spectrum of the road remains relatively unchanged. This corresponds to the chlorophyll
absorption band edge that occurs at a wavelength of about 700nm. In Figure 2.8 note
how a “block” of high covariances rapidly transitions to a “block” of low covariances at
band 55. This feature is an indicator of the fact that there are significant differences in
the spectral shapes of the observed pixel vectors which start at this wavelength. This
can be interpreted to mean that the scene consists of both vegetation and non-vegetation
pixel vectors. If the pixel vectors did not posses significantly different shapes, then this
feature would not have manifested itself. The Davis Monthan scene is comprised
predominantly of a sandy background, and as a result, the area between bands one and

100 appears to have high covariances and correlation coefficients without the sharp
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transition at band 55. The blocky appearance in the first 100 bands, evident when
vegetation was present, is now not present.

While these observations are cursory, they demonstrate how the statistics of the
scene reveal a great deal of useful information. A more refined study of scene statistics,
such as that pursued by Brower, et. al., (1996), finds that the scene statistics can be used
to differentiate urban and rural areas. This idea can be carried further to the problem of
differentiating small man-made objects in a natural background but is beyond the scope
of this study. Considered independently, the scene statistics are interesting in that they
provide further perspective and understanding into the nature of the scene. More
importantly, they bring us closer to the invariant display problem by setting the stage for

an understanding of the techniques which use statistics to describe the background.

3. Related Signal Processing and Linear Algebra Concepts

a. Linear Transformations of Random Variables

The fundamental basis of the hyperspectral image analysis technique
utilized by this study is that of linear transformations. Our statistical definitions of the
data using the covariance matrix and its standardized form, the correlation matrix, are
central to an invariant display strategy. Understanding the effect of a linear
transformation on these matrices is also important and will be addressed.

A linear transformation of a vector x into a vector y is accomplished by
the matrix A in the relation y = AX. Figure 2.10 illustrates this concept using two-

dimensional vectors.
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Figure 2.10: Linear Transformation of a Two-dimensional Vector.

The transformation matrix A rotates and scales the vector x into the new

vector y. Since second order moment matrices of random vectors are symmetric, we may
assume that A is symmetric. The expectation operator is linear, which implies that the
mean of the random vector X is transformed as:

E{y} -E{Ax} - AE{x} 2.7)
which can be restated as my = Am,, where the subscript on the mean vector denotes
which random vector the mean vector represents. Similarly, using the definition of the

second order moment, the covariance matrix is transformed by the matrix A so that
(Therrien, 1992, p. 45)
Ty =ATAT (2.8)

A particularly useful transformation is one which transforms a random

vector X into another random vector y whose &™ and /*

components have the property of
statistical orthogonality such that (Therrien, 1992, p. 50):

E{ykyl} =0 k=L (29)

The statistically orthogonal or uncorrelated random variables which result from such a
transformation cause the transformed data covariance matrix to be diagonal. The means
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of achieving such a transformation that diagonalizes the covariance matrix is provided by
the concept of eigenvectors and eigenvalues.

b. Eigenvectors and Eigenvalues

The eigenvalues of a L x L matrix A are the scalar roots of its
characteristic equation, and are denoted as {A;,... AL}. The nonzero vectors, {ej,...,eL}

which satisfy the equation
Aey = Ay ex (2.10)

are called the eigenvectors of A. An eigenvector defines a one-dimensional subspace that
is invariant with respect to premultiplication by A (Golub and Van Loan, 1983, P. 190).
In applying the above definitions of the eigenvalue and eigenvector to the L x L
covariance matrix, we obtain

2x€k = Ay . @.11)
The covariance matrix in this relation may be viewed as a linear transformation which
maps the eigenvector ey into a scaled version of itself (Therrien, 1992, p. 50). Because of
the symmetry of the real covariance matrix, the L eigenvalues are guaranteed to be non-
negative and real (Searle, 1982). It is also possible to find L orthonormal eigenvectors
{ey,....e}, that correspond to the L eigenvalues (Therrien, 1992, p. 50) that satisfy

ei'e=J;. (2.12)
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c Unitary Transformations

Suppose that the eigenvectors of the L x L covariance matrix >, are
packed into a matrix E as column vectors. Then, because of the orthonormality of the

eigenvectors, the matrix E transforms the covariance matrix in the following manner:

«— ¢ - T ™[4 0
ES.E = : dYla o oal= = A, (2.13)
« g - \) (o A

following the rules of linear transformations (Therrien, 1992, p. 45). The transformation
matrix ET defines a linear transformation of a random vector X into a random vector y, by
the relation

y=E'x (2.14)
in which the covariance matrix of y is a diagonal matrix represented by A. This
diagonalization of the covariance matrix X, is another manner of stating that the
components of random vector y are now uncorrelated since all off-diagonal elements of
A are zero. The orthonormal columns of E imply that the transformation matrix ET

represents a unitary transformation defined by (Therrien, 1992, p. 51)

ETE=EE"=L (2.15)

d. A Geometric Interpretation of the Unitary Transform

If we assume that our data has a Gaussian distribution, then we can

describe its probability density function (pdf) with a family of ellipsoids as:

(x-my)" X, (x-m,) = constant (2.16)
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Because the matrix E is orthonormal, the implication is that the eigenvectors of 2 are the
same as those of its inverse, and the eigenvalues of 2., are simply the reciprocals of

those of >x (Jolliffe, 1986, p. 14). Thus, the inverse transformation may be written as
x=E'y (2.17)
and the equation defining the contours of constant density may be rewritten as:

—mk || yk —mx |

= constant =C (2.18)
Ak

!
(x-m)" E A"E" (x-m,) = (y-m,) A "(y-m,) = Z} =
k=1

which is the equation for an ellipse with the principal axes of the ellipse being aligned
with the eigenvectors and the magnitudes proportional to A (Jolliffe, 1986, P. 19). This
geometrically illustrates the role that eigenvalues and eigenvectors play in the unitary
transform. Figure 2:1 1 shows that the unitary transformation is equivalent to a rotation of
the coordinate axes. The tilt of the ellipse with respect to the original coordinate system is
indicative of the fact that correlation exists between the original vector components
(Therrien, 1992, p. 59). In the new coordinate system defined by the unitary
transformation, the axes of the ellipse are parallel to the new axes, showing that the
vector components are indeed uncorrelated in this coordinéte system. Although the
assumption was made that the data was Gaussian, this concept of two-dimensional
ellipsoids is a useful one in understanding the workings of the transformation even for
non-Gaussian data. In this context, the scatter plots of the Landsat data are useful in
portraying a rough idea of the distribution of the probability density function of the

random vectors.
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Figure 2.11: The Unitary Transformation as a Rotation of Axes. From Richards, 1993.

4. Principal Component Analysis

a. Description

Principal components analysis (PCA) as applied in multispectral and
hyperspectral remote sensing is an analytical technique based on the linear transformation
of the observed spectral axes to a new coordinate system in which spectral variability is
maximized. The impetus for such a transformation is the high correlation that exists
between adjacent bands in spectral imagery. The spectral overlap of the sensors and the
wide frequency range of the energy reflected from the ground account for this high
correlation (Rao and Bhargava, 1996, p. 385). This implies that a great deal of spectral
redundancy exists in the data. The principal components transformation decorrelates the
information in the original bands and allows the significant information content of the
scene to be represented by a smaller number of linear combinations of the original bands
called principal components. The transformation effected by the PCA is a unitary
transformation and is graphically depicted in Figure 2.12 as operating on observed pixel

vectors to produce new pixel vectors with uncorrelated components.

30




The immediate applications of the principal components transformation
for this study are data compression and information extraction. In the problem of target
detection and development of an invariant display strategy, the latter is of considerable
interest. PCA techniques are based exclusively on the statistics of the observed variables,
requiring no a priori deterministic information about the variables in the image. This will
allow for a methodology whereby no preprocessing need be performed prior to displaying

the data utilizing “global” a priori knowledge.

!
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Figure 2.12: PC Transformation Depicted as a Linear Transformation.
b. Background

Principal components analysis is an extremely versatile tool in the analysis
of multidimensional data. In tracing the historical roots of this technique, it is clear that it
is based upon ideas drawn from the fields of statistics and linear algebra. The
mathematical underpinnings of PCA deal with the diagonalization of the covariance
matrix via eigendecomposition of the data by unitary transform and serves as a bridge
between matrix algebra and stochastic processes (Haykin, 1996). The wide applicability
of PCA is due to the fact that it assumes a stochastic outlook of the data, which is

fundamental to the analysis of data in many scientific disciplines. We will investigate the
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views of two disciplines which employ PCA to better understand some of the mechanics
of this seemingly simple transformation. The two views are those of multivariate data
analysis and signal processing. A thorough understanding of the ideas that motivate the
PCA will assist in understanding why it is such a commonly used technique in remotely
sensed imagery analysis, and why this strategy is most appropriately applied to an
invariant display strategy.

(1)  Multivariate Data Analysis View. PCA was described by
Pearson in 1901 and introduced as the Hotelling transform in 1933 by Hotelling for
application in educational psychology (Singh and Harrison, 1985, p. 884). Hotelling’s
goal was to find a fundamental set of independent variables of smaller dimensionality
than the observations that could be used to determine the underlying nature of the
observed variables (Hotelling, 1933, P. 417). In many scientific experiments, the large
number of variables makes the problem of determining the relative importance of specific
variables intractable. Hotelling’s method makes the problem manageable by discarding
the linear combinations of variables with small variances, and studying only those linear
combinations with large variances. Since the importgnt information in the data is usually
contained in the deviation of the variables from a mean value, it is logical to seek a
transform which provides a convenient means of identifying the combinations of
variables most responsible for the variances (Anderson, 1984, p. 451). The linear
combination of the original variables which behave sufficiently similarly are combined
into new variables called principal components. In this context, principal components
analysis studies the covariance relationships within a data set by investigating the number
of independent variables, and identifies the natural associations of the variables.
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Mathematically represented, each principal component is a scalar
formed by a linear combination of the elements of the observed random vector x, where
each vector component corresponds to a random variable. The principal components are
constructed in such a manner as to be uncorrelated with all other principal components
and ordered so that variance is maximized (Jolliffe, 1986, p. 2). The k™ principal
component is obtained by multiplying the transposed k" eigenvector of ¥ by the data
vector x, as depicted in the equation

Yk = eka.- (2.19)

The k™ principal component is also called a score, and the
components of the eigenvector are called loadings because they determine the
contribution of each original variable to the principal component. Generalizing the scalar
result of Equation 2.18 to a vector result:

y=E'x (2.20)
we obtain a vector of L principal components when we take the product of all of the
transposed eigenvectors of 2 and the data vector, x.

While the property of the unitary transform to produce new
uncorrelated variables has been previously discussed, the property of the unitary
transform to maximize the variance, which is central to the PCA, will be discussed
further. The best illustration of this property is the algebraic derivation of the PCA. The
goal is to maximize the variance of the first principal component, denoted as VAR[y;] or
VAR[elTx]. By the definition of variance as a second order moment, this is equivalent

to maximizing e’y e;, where the eigenvectors are orthonormal, so that e;"e; =1. The
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method of LaGrange multipliers is employed so that the expression to be maximized is

differentiated with respect to the eigenvector and set equal tc zero as
0 . .
— e Sx e e er-1)] = 0= C-id) e = 0. (2.21)
der

In Equation 2.21, A is a Langrangian multiplier in the left hand
expression and corresponds to the largest eigenvalue of 2., in the right hand expression,
and e; is the eigenvector corresponding to the largest eigenvalue (Jolliffe, 1986, p. 4).
Thus, the eigenvalues of 2 represent the variances of the principal components, and are
ordered from largest to smallest magnitude. If the original variables have significant
linear intercorrelations, as spectral imagery does, then the first few principal components

account for a large part of the total variance. (Singh and Harrison, 1985, p. 883). Figure

2.13 depicts the eigenvalues and associated variance percentage for a typical Davis-

Monthan scene.
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Figure 2.13: Eigenvalue Plot of Davis-Monthan. Note the large fraction of the overall
variance within first few PCs.

(2)  Signal Processing View. In the analysis of random signals,

-

the key is to have a set of basis functions that make the components of the signal
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statistically orthogonal or uncorrelated (Therrien, 1992, p. 173). The Karhunen-Loeve
Transform (KLT) was introduced in 1947 for the analysis of continuous random
processes, and is developed here in its discrete form, the DKLT. It is the same unitary
transform previously presented, but is posed to solve the problem from a different
perspective. The motivation for the DKLT is actually an expansion, best seen by Figure
2.14, which shows a discrete observed signal as a weighted sum of basis functions, which
are in fact the eigenvectors of the covariance matrix. The observed pixel vector spectrum
may be thought of as a discrete signal, indicated by the square brackets in the notation of
Figure 2.14. Whereas in the PCA approach the original variables are weighted by
eigenvector components to form principal components, in the DKLT the eigenvector
basis functions, {es,...,ex}, are weighted by the principal component scores, {y1,...,yn}, to
form a representation of the observation. The DKLT has an optimal representation
property in that it is the most efficient representation of the observed random process if
the expansion is truncated to use fewer than N orthonormal basis functions. This makes it
very attractive from a compression perspective, and explains the popularity of DKLT as a
compression scheme. |

Another important property associated with the DKLT is the
equivalence between the total variance in the vector x and the sum of the associated

eigenvalues. This property is mathematically stated by the equation

i cz,-=zL: Ai (2.22)
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Figure 2.14: The Karhunen- Loeve Expansion in Terms of Discrete Signals. After
Therrien, 1992, p. 175.

" In Equation 2.22, ¢% is the variance of the original variables and A; is the eigenvalue

representing the variances of the transformed variables and the index i ranges over all L

bands. This property only holds for the orthonormal vectors which are eigenvectors of

2 x and not for other orthonormal basis séts of vectors (Kapur, 1989, p. 501).

When a representation of a signal is formed by using fewer than L
basis functions, the mean square error (MSE) is a means of quantifying how well the
representation corresponds to the original signal by measuring the power of the difference
between the representation and original signals. The MSE incurred by truncating the
representation is equal to the sum of the eigenvalues of the covariance matrix that were
left out of the representation. (Therrien, 1992, p. 179) Conversely, the largest
eigenvalues and their corresponding eigenvectors can be used to represent the intrinsic
dimensionality of the signal. This corresponds to the number of dimensions that would

be needed to represent the signal to some predetermined MSE.
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In signal processing applications, the DKLT is a means of
compressing data by representing it with a truncated number of eigenvectors. It is also an
optimum way of detecting a signal in noise and works particularly well for the detection
of narrowband signals. Since a significant portion of the signal energy lies in the
direction of the first few eigenvectors, those eigenvectors can be said to define a subspace
for the signal and all other eigenvectors define the subspace for the noise. This simple
example is the basis for several high resolution methods of spectral estimation used to

detect sinusoids in noise (Scharf, 1991, p. 483).
c Operation

PCA uses the eigenvectors of 2, to assemble a unitary transformation
matrix which, when applied to each pixel vector, transforms the original pixel vector into
a new vector with uncorrelated components ordered by variance. The eigenvector
components act as weights in the linear combination of the original band brightness
values that form the principal components (Richards, 1993). The new image associated
with each eigenvector is referred to as the principal component image. The principal
component images are ordered from largest to smallest in terms of variance, and are
revealing in their composition. As Singh and Harrison (1985) point out, it must be kept
in mind that the PCA is an exploratory technique that constructs new variables called the
principal components (PCs). These new variables are artificial and do not necessarily
have a physical meaning, as they represent linear combinations of the observed variables

and cannot themselves be observed directly, but they should be related because the first

37




eigenvector in spectral imaging is a representation of the mean solar energy of the scene
and the next few eigenvectors deviate as the variance changes.

In traditional application of PCA, the hope is that the transformation will
enhance the contrast of the image by grouping like areas together to such an extent that
objects or areas of interest can be more readily discriminated in the principal component
images. Jenson and Waltz (1979) give an analogy which clearly explains the role of PCA
in the traditional application. They imagine a tube filled with ping pong balls. Looking
at the tube directly from an end, only one ball is apparent, the same way that the original
spectral image is. Turning the tube sideways, all of the balls become visible (Jenson and
Waltz, 1979, p. 341). PCA has the effect of decorrelating the data so that independent
sources of spectral features can be discerned.

Though PCA assumes no a priori knowledge of the scene, PCA as
described here depends intrinsically on the scene because scene-specific features will
dictate the shape of the eigenvalues. Nevertheless, certain general observations can be
made regarding the PCA and an associated physical meaning without any knowledge of
the scerie. The following two figures highlight these observations. Figure 2.15 shows the
first 20 PC images of the Jasper Ridge AVIRIS scene. For a non-negative symmetric
matrix, the first eigenvector is all positive. A weighted sum loosely corresponds to the
average spectral radiance. All other eigenvectors must have at least one sign change to
be orthogonal to the first eigenvector. This is due to the fact that in forming the first
principal component image, the first eigenvector has heavily weighted the original bands
possessing the most variance. Thus, the first principal component image will have a

variance that is larger than that of any single original band image.
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Figure 2.15: First 20 PC Images of Jasper Ridge Scene
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It is the weighted sum of the overall response level in all original band images. The
second principal component image is the difference between certain original band
images. As the principal component image number increases, the PC image holds less of
the data variance. This effect manifests itself as a rough decrease in image quality with
increasing PC image number. In Figure 2.15, the fact that the first twelve PC images
contain relatively clear details of the scene indicates that these PC images together
account for the majority of the overall spectral variance in the scene. It is interesting to
note that when using PCA, the higher numbered PC images sometimes contain a large
amount of local detail. Though it is tempting to dismiss the higher numbered PC images
as not containing any useful information because they have low variance, one must keep
in mind that the covariance matrix on which PCA is based is a global measure of the
variability of the original image (Richards, 1986, p. 138). This implies that small areas of
local detail will not appear until higher PC images since they do not make a statistically
significant impact on the covariance matrix. Another point that is noteworthy is the issue
of SNR. PCA orders PC images based on total variability. It does not differentiate
betweeﬁ the variability representing desirable information and the variability representing
undesirable noise (Jenson and Waltz, 1979, p. 338). Ready and Wintz (1973) argue that
PCA improves the SNR of the spectral image. Their definition of noise is additive white

Gaussian noise with a variance of 0,,2 . The SNR of the original image is

0_2

(SNR), = —xmax (2.23)
o

2
n

which is the maximum original band variance over the noise variance. The SNR of the

PC images is
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A
2
n

which is the largest eigenvalue (or new variance) over the noise variance. Since the first

(SNR), = (2.24)

eigenvalue always has a greater variance than any of the original bands, the improvement

in SNR is
SNR
ASNR = ESNR;y = :1‘ (2.25)
X O—xmax

and will be greater than one. The SNR improvement applies as long as the variance of
the eigenvalue exceeds that of the original bands. The diminishing SNR manifests itself
in Figure 2.15 as an increased fuzziness of the image that begins to appear around the
ninth PC image. Figure 2.16 further accentuates the above observations using the Cuprite
radiance and reflectance images. The first ten PC images are éhown for each data set.
The same general trends noted for Figure 2.15 appear. The first few PC images offer the
greatest amount of contrast. The effects of noise become apparent sooner in decreased
image quality with the reflectance data than the radiance data.

A traditional means of presenting PCA images is to form a false color
composite image consisting of the first, second, and third PC images as the red, green
,and blue coiors. Figure 2.17 presents such false color images for the Jasper Ridge and
Cuprite radiance PC images. This mode of presentation captures the major sources of
spectral variability in one image. The levels of detail and contrast apparent in the

composite image are interesting to compare with the original image shown in Figure 2.3.
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Figure 2.16: First 10 PC Images of Cuprite Radiance and Reflectance Scenes.

(Decreasing image quality as variance decreases for both radiance and
reflectance. Noise effects more apparent earlier in reflectance.)




J ésper Rldg; | Cuprte

Figure 2.17: False Color Images of Jasper Ridge and Cuprite Radiance PC Scenes.

A facet of PCA rarely mentioned in the pertinent literature on PCA is the
characterization of the original and PC images using the behavior of the eigenvalues and
eigenvectors. The behavior of the eigenvalues and eigenvectors will be investigated
more fully later in the study because these attributes form an important part of analyzing
the scene information content. In spectral images, the typical trend in the eigenvalue
magnitude is that a very small number of eigenvalues have a disproportionately large
magnitude compared to the others. The obvious reason for this distinct grouping of
eigenvalues is that the data in the original image exhibits a high degree 6f interband
correlation and the magnitude of the eigenvalues reflects the degree of redundancy in the
data. (Richards, 1986, p. 137). Phrased another way, the intrinsic dimensionality, which
is represented by the number of large eigenvalues of the data, is much smaller than the
original number of dimensions. This is good from a compression view, since the image
variance will be accounted for by a very small number of principal components. From a
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strict analysis viewpoint, it does not reveal as much information. If the problem were
that of a narrowband signal embedded in noise, then the large eigenvalues would be
associated with the signal. In the hyperspectral imagery analysis problem, the spectrum
associated with a target is not narrowband, and hence is not clearly delineated from the
eigenvalues of the background and other interfering signatures. The eigenvalues can be
divided into a primary and a secondary set, where the secondary set roughly corresponds
to the effects of instrumentation noise (Smith, Johnson, and Adams, 1985, p. C798). The
primary set corresponds to the linear combinations of original bands that cause the most
variance in the scene. Figure 2.18 illustrates the first ten eigenvalues of the Jasper Ridge
and Cuprite radiance images together. The y-axis of this plot is normalized and
represents the variance of ¢ach PC image. The Jasper Ridge PC images exhibit slightly
higher variances (eigenvalues) than the Cuprite scene. The quality of the first eight PC

images noted in Figure 2.15 corresponds to the steeper initial slope of the detailed

eigenvalue plot.
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Figure 2.18: Eigenvalue Behavior of the Jasper Ridge and Cuprite Radiance Scene
Covariance Matrices
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Likewise, the first five images of the Cuprite radiance PC images in Figure 2.16 are
reflected in the steepér slope of the first five eigenvalues of Figure 2.178.

Figure 2.19 shows the eigenvalues of the Cuprite reflectance image
compared to the radiance. The sharp drop in the slope of the eigenvalues is paralleled by
the drop in image quality noted in Figure 2.15 after the second PC image. In general, the

AVIRIS reflectance eigenvalues are lower in magnitude than those of the radiance.

Cuprite Radiance and Reflectance PC Normalized
Eigenvalues

1.00 e Ay

0.80
%

0.60

0.40

0.20

0.00 PURIE RREN SN N SR
7

1 2 3 4 5 6 8 9 i0
| i—®—Radiance - 0.822.0.048 0.023 0.001 0.001 0.001:0.000 0.000 0.000 0.000"

——peflectance 0.901 '0.063 0.022 0.005 0.002-0.001:0.001 '0.001 0.001 0.000
PC Number

Figure 2.19: Eigenvalue Behavior of the Cuprite Radiance and Reflectance Scene
Covariance Matrix.

The above results clearly indicate that the variance for the transformed
data are concentrated in the first few PC bands, indicating that the dimensionality is on
the order of 10 vice 200-225. It is important to note that the variance of the original data
is equal to that of the transformed data. This property shows that the PC transformation
merely redistributes the concentration of variance in the bands of a spectral image so that

the higher variances occur in the first PC bands. (Stefanou, 1997)
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The eigenvector behavior is less clear than that of the eigenvalues. The
eigenvectors form the bases of the principal components subspaces. Physically, the
eigenvectors correspond to the principal independent sources of spectral variation. As
such, the wavelengths at which the maxima and minima of the eigenvectors occur
account for the wavelengths that contribute the most to a particular independent axis of
variation (Smith, Johnson, and Adams, 1985, p. C808). A signal processing
interpretation of the eigenvectors is that the eigenvectors act as band pass filters that
transform an input observed spectrum into a new spectrum that has fewer data points
(Johnson, Smith, and Adams, 1985). This interpretation is analogous to the optimum
representation property of the DKLT. It can be further shown that the eigenvectors of
reflectance data will tend to have a more distributed appearance. The effect of the sun on
the low numbered original bands can be mitigated in the conversion to reflectance,
although this is not always desired, especially for real-time processing. Further
examination of eigenvectof behavior emphasizes the correlation between the eigenvectors
and variance occurring in the original image bands and it can be shown that the
eigenvectors of the PC transform tend to emphasize those original bands that contain the
most variance with larger weights and inclusion in the low numbered eigenvectors.
(Stefanou, 1997)

The PCA technique has been examined from the perspective of its
results and the significance of its inner workings. Key points in PCA analysis are:

e In general, PCA provides an analysis of the data which guarantees an output set of
images ordered by variance.

e Assuming white noise, it improves the SNR in the transformation from the
original image cube to the PC images.
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e The PC images accentuate spectral regions of high variance. However, an area of
local detail may not be accentuated by a PC image due to its statistical
insignificance.

e Because the variability of the covariance data is scale-dependent, PCA is sensitive
to the scaling of the data to which it applied, and as a result, the PCA of radiance
data will place more emphasis on the visible bands due to the sun than the PCA of
reflectance data.

e PCA does not differentiate between noise and signal variances because it operates
strictly on the variance of the observed data.

As a practical note in the implementation of PCA, the computation of the
eigenvectors and eigenvalues of Y, is an expensive operation. Specific methods from
computational linear algebra such as inverse iteration, QR factorization, and singular
value decomposition (SVD) are all applicable in their calculation. (Watkins, 1991)

The previous discussion highlights three crucial issues in development of
an invariant display strategy utilizing principal components. Issue number one is the fact
that the first PC band is typically a representation of the scene average brightness and is
generally dominated by solar radiance, but it can be affected by major scene constituents
such as in Jasper Ridge. The second issue is that the PC transformation outputs a set of
images ordered by variance with the 2", 3™, .N™ PCs dependant on the specific contents
of the image and the third issue is that PCA is sensitive to scaling of the data to which it
applied. Because of the scaling sensitivity, the PCA of radiance data will place more

emphasis on the visible bands due to the sun than the PCA of reflectance data.

47




THIS PAGE INTENTIONALLY LEFT BLANK

48




1. PHYSICAL VISION

A. DESCRIPTION

The typical person can detect light with a wavelength in the range of about 400
nanometers (violet) to about 700 nanometers (red). Our visual system perceives this
range of light wave frequencies as a smoothly varying rainbow of colors. This is called
the visible spectrum. Figure 3.1 illustrates the visible spectrum approximately as a

typical human eye experiences it.

Higher Frequency Lower Frequency

500 600
Wavelength {nm)

Figure 3.1: Human Visual Spectrum. (Scott, 1997)

The human eye has a lens and iris diaphragm which serve similar functions to the
corresponding features of a camera. Other than this, the eye is quite different from a
camera. Whereas a camera has a flat image plane where the resolution and spectral
response is reasonable constant across the entire plane, the eye does not. The human eye
also provides a motion sensor system with nearly 180 degrees horizontal coverage. The
eye's peripheral vision system only supports low resolution imaging but offers an
excellent ability to detect movement through a wide range of illumination levels.

Peripheral vision also provides very little color information.
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The retina is a thin layer of nerve cells which consists of light sensor cells called

rods and cones. The majority of the eye's inside chamber has this retina layer, accounting
for the very wide angle of our peripheral vision. Figure 3.2 is an illustration of the cross

section of the human eye.

The Human Eye
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Figure 3.2: Cross Section of the Human Eye.

The rods in the retina are long and slender while the cones are generally shorter
and thicker. Other than the physical differences, there is an important functional
difference in that the rods are more sensitive to light than the cones. Figure 3.3 depicts

the relative sensitivity of rods and cones as a function of illumination wavelength.
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Figure 3.3: Sensitivity of Rods and Cones. (Pratt, 1991, p. 25)
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It has been experimentally determined that there are three basic types of cones in
the retina. (Wald, 1964) These cones have different absorption characteristics as a
function of wavelength with peak absorptions in the red (580 nm), green (540 nm) and
blue (450 nm) visible spectrum. Our perception of color is determined by the
combination of cones are excited and by how much. Figure 3.4 illustrates the spectral
sensitivity of the typical human visual system. The RGB sensors are denoted with the
Greek letters Rho (red), Gamma (green) and Beta (blue). Human vision has a great deal
of sensitivity to low ambient illumination situations. In low ambient illumination, the
cones contribute little or no sensitivity and imaging is primarily accomplished by the

rods.

500 600
Wavelength {(nm)

Figure 3.4: Spectral Absorption Curves. (Scott, 1997)

The sensitivity curves of the Rho, Gamma and Beta sensors in our eyes determine
the intensity of the colors we perceive for each of wavelengths in the visual spectrum.
Figure 3.5 is an approximation of the visual spectrum illustration adjusted for the

sensitivity curves of our Rho, Gamma and Beta sensors.
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Figure 3.5: Spectral Absorption Curves. (Scott, 1997)

There are three perceptual definitions of light: brightness, hue, and saturation. If
we observe two light sources with the same general spectral shape, the source with the
greater intensity will generally appear to be perceptually brighter. Hue is the attribute
that distinguishes a red color from a green color or a yellow color. Saturation is the

attribute that distinguishes a spectral light from a pastel light within the same hue.

B. COMPARISON TO PRINCIPAL COMPONENTS

Processing of color within the human eye is accomplished through an achromatic
channel and two opponent-color channels. The opponent-color channels are the red-
green opponent and the blue-yellow opponent channel. (Wyszecki and Stiles, 1967;
Buchsbaum and Gottschalk, 1983) The A, R-G, and B-Y channels are formed from a
principal components analysis, are statistically uncorrelated, and therefore make up
orthogonal dimensions in a 3-D color space. Furthermore, it has been shown that there
are two fundamental axes within color space comprised of a R-G plane where all colors
have an absence of yellowness or blueness and a B-Y plane where all colors have an

absence of redness or greenness. The intersection of these two planes is a line with
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absence of all color, or the gray line, which corresponds to the achromatic channel.
(Krauskopf, et al., 1982)

We can use the concept of three orthogonal axes to develop the hue, saturation,
and value (H-S-V) color representation system. From the previous secﬁon, hue indicates
a particular color, e. g. the perceived colors of red, green, blue, etc., saturation indicates
the purity of a particular hue, e. g. S=1 denotes a pure hue while S=0 denotes absence of
color (gray), and value is related to the brightness or intensity of a particular color. The
perceptual color space therefore makes up a cone, with the A axis as the axis of rotation
of the cone and the R-G and B-Y axes transverse. Hue is determined by computing an
angle in the (red-green) - (blue-yellow) plane, and saturation is determined by the angle
between a particular point in color space and the gray axis. Figure 3.6 graphically depicts

this conical representation and its associated radial visualization.

Figure 3.6: Perceptual Color Space.

When mapping color space we encounter three distinct problems. The first is that
color space is nonlinear. The non-linearity is related to the spectral response functions of

the individual photoreceptors. The second problem is that we typically map red next to
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violet when they actually appear at opposite ends of the spectrum. This can be seen in
Figure 3.1. Thirdly, as intensity is increased, the hue is perceived to shift, and this is the
issue of color constancy. (Brainard, et al., 1993, p. 165-170) The fourth problem is
associated with the color planes. It has been demonstrated that while red-green and blue-
yellow planes exist, other similar color-opponent planes do not seem to exist, hence the
term “cardinal directions" used by Krauskopf, et al. This cardinal direction scheme will

be utilized for the invariant mapping strategy in later sections.

C. PSEUDOCOLOR AND OPPONENT COLOR MAPPING STRATEGIES

In the past, pseudocolor displays have utilized a mapping strategy whereby the

principal components were directly depicted by mapping the PCs as follows:

P, —> Red P, — Brightness
P, - Green OR P, - Hue
P; —» Blue P; — Saturation

Figure 3.7 is a mapping of the first three PCs into (R,G,B) of a scene from Davis-
Monthan AFB. Although this method does depict some of the high spatial frequency
information, much of it is suppressed and there is an apparent smearing, which is a result
of how the observer views the data. These methods are not a good fit to human vision.

It has been shown that for humans, the achromatic spectral channel accounts for
approximately 97% of color vision, while the R-G and B-Y channels account for
approximately 2% and 1% respectively. (Buchsbaum and Gottschalk, 1983) From the
previous discussion of the principal components tfansformation, it can be readily seen

that the first principél component of a spatial image is roughly achromatic in that it
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samples the mean illumination distribution and can therefore be viewed as the intensity or
brightness of a hyperspectral image. Continuing along this reasoning, we note that the
second and third PCs contain significantly léss scene variance and subsequently higher
PCs contain even lower amounts. From this we may be able to conclude that we can map

the second and third principal components into the (R/G) — (B/Y) plane.

Figure 3.7: Pseudocolor Representation of Davis-Monthan Scene Obtained by Mapping
the First Three PCs into (R,G,B).
Mapping the first PC into the achromatic channel, the value of the second PC into

the R-G channel and the value of the third PC into the B-Y channel yields

2

0 = atan (%J — H (Hue)

P2+ P}
2—}33— — S (Saturation) 3.1

1
Py — V (Value)
where P; is the i™ PC. (Tyo, et. al., 2000)
The mapping of the same Davis-Monthan scene with Equation 3.1 yields Figure
3.8 and is a more visually pleasing representation because pixels that don't have a

significant projection onto either P, or P; appear desaturated or gray. This makes the
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image easier to view because naturally occurring scenes tend to be largely desaturated
with low dimensionalities in the visible portion of the spectrum. (Buchsbaum and

Gottschalk, 1983)

HSV FROM COVARIANCE, COLOR RESHAPED

Figure 3.8: Pseudocolor Representation of Davis-Monthan Obtained with Equation 3.1.

The mapping strategy in Figure 3.8 was designed with the performance of the
human visual system in mind and does not present images that contain large regions of
highly saturated hues that vary rapidly. To obtain Figure 3.8 we first needed to adjust the
hue representation within MATLAB. MATLABSs built-in HSV2RGB function maps the
colors starting with red, then runs through‘ yellow, green, blue, and then back to red again
in a non-orthogonal manner. The non-orthogonal mapping yields incorrect hue
opponency, 1.e. red not opposite green. Figure 3.9a depicts MATLABs default non-
orthogonal colorwheel and Figure 3.9b is the colorwheel reshaped to correspond to the

correct color orthogonality.

Default wheel Reshaped wheel

Figure 3.9: Hue Wheels Using MATLAB Default and Reshaped Hue Values.
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Although the remapping of MATLAB’s colorwheel yields the correct
orthogonality between the colors, it does not produce an image that maps the materials
within the scene to our perception of that material, i.e. vegetation to green, water to blue,
etc. Utilizing the HYDICE bands of the original data corresponding approximately to the
peak sensitivities of the p, y and B receptors, spectral bands 150, 38 and 10 respectively,
we can display a scene that depicts approximately how we would perceive that scene if
viewed directly. Figure 3.10 is a Red-Green-Blue image corresponding bands 150, 38
and 10 that accurately portrays the golf course as green and the background sandy soil as

tan to slightly red.

True color, R-150, G-38, B-10 (Clipping)

Figure 3.10: RGB Image with Original Data Bands 150, 38 and 10.

Utilizing the RGB mapping strategy of Figure 3.10 and knowledge of linear
transformations and eigenvectors from chapter two, we can identify a 3x3 set of RGB
eigenvectors for the individual scene. These statistics can then be applied to the RGB
transformation of Equation 3.1 to produce an image that preserves the hue of the primary
source of variance within the image. (Figure 3.11) This mapping strategy retains the

image display advantage achieved with Equation 3.1 and also allows for a
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straightforward method of mapping this scene into perceptual colorspace that preserves

the expected hues for major scene constituents.

Transformed and Color Roteted Image

Figure 3.11: HSV Image Transformed with Scene RGB Data.

Keeping human visual perception and the characteristics of PCs in mind, it is
clear that if a general set of PCs can be identified, a color mapping strategy can be
arranged so that materials are presented in a straightforward manner, i.e. water can
always be mapped to blue, etc. As a wider range of wavelengths is considered, it should
be expected that more than 3 PCs may be necessary to capture an equivalent amount of
the data (99% or more). The next sections will investigate this and develop a coherent

method for an invariant display methodology.
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IV. DATA ANALYSIS
A. CASE STUDIES

For this study, the Davis-Monthan HYDICE Collects of June and October 1995
were utilized for analysis. Figure 4.1 1s an aerial photograph of the Davis-Monthan

collect area. The case studies are subsets of Figure 4.1.
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Figure 4.1: Aerial Photograph of Davis-Monthan Collect Area.




B. CASE STUDY ANALYSIS

Analysis on the data sets were performed utilizing three statistical methods. The
first method involved computing the unbiased estimate of the covariance matrix from
Equation 2.4. The second method utilized the correlation matrix obtained from the

covariance coefficients as identified in Equation 2.5 and the third method used the direct

correlation as found from

N
5, = Lo

As noted earlier, computation of the covariance and direct correlation matrices is
computationally expensive. Taking advantage of the symmetric nature of the statistics
reduces the number of computations required, but real-time computing of these values is
still time consuming and not practical. Table 4.1 highlights this and depicts the number

of flops required for the two prevalent data sets from the Davis-Monthan collect.

Data in Mega Samples, Lines, Bands
Flops 320x960x210 320x1280x210
Band Mean 64.57 86.0836
Computation
Covariance and 474175 63223.984
Direct Correlation
Correlation Matrix
from Coefficients 0.1764 0.1764
Image to PC 27096 36128
Transfom Average

Table 4.1: Statistics Computation.

The direct correlation statistics of the data sets were found from Equation 4.1 and

were also investigated to identify the effect of removing the mean from each band.
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Figure 4.2 is a density slice representation of the three statistical matrices for two Davis-
Monthan scenes and the average of all sixteen scenes. Notice the similar structure and
intensity values for the same matrix type. The first set has a covariance magnitude on the
order of 10°, direct correlation magnitude of 10 and the next set is on the order of 10°

and 10" respectively.

Covariance Correlation Direct Correlation

Figure 4.2: Density Slice Representation of Statistics Matrices. First row - Scene One.
Second Row - Scene Two. Third Row - Average.

These results are very pleasing in that they graphically depict a structural
similarity within the statistics and corresponds very well to results obtained by Brower,
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et. al., 1996. This structural similarity will be capitalized on to develop an invariant

display strategy.

Of the sixteen data sets, all have the same basic characteristics as the two scenes
shown in Figure 4.2, and as depicted by the average, the structure remains nearly constant
across all sixteen scenes. Further investigation into the physical properties of the data
sets revealed that the mean value of all the collects were also structurally similar. Figure
4.3 is an example of a mean obtained from the Davis-Monthan collects. The mean value
corresponds to the average radiance for that particular band. This implies that if there is a
similar structure within the collection means, then there should be a similar structure for
the first eigenvector of all the collections since the first eigenvector is a representation of
radiance (Figure 4.4). Furthermore, we would expect that since the covariance and direct
correlation matrices are derived directly from the pixel vectors, the eigenvectors and
individual pixel vectors will display similar characteristic behaviors, i.e., the pixel vector

spectrum will follow the behavior of the eigenvector nulls. (Figure 4.5)

Notice also that the correlation matrices have the same scaling. It is clear from
the correlation matrices that there is a certain degree of symmetry between the bands.
But, it must be remembered that the correlation matrix as shown here is the statistical
correlation between the bands and therefore the eigenvector behavior will not follow that
of the scene content, but that of the interband correlation. This is clearly seen in Figure
4.5 where the pixel spectra behavior does not correspond to that of the first eigenvector of

the correlation matrix.
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Figure 4.5: Pixel Spectra Comparison to the First Eigenvector.

Taking this further, we also expect that as the eigenvector number increases that
the eigenvector behavior will be become more directly correlatedlto the specifics of the
particular scene we are studying, implying that as the eigenvector number increases, the
individual scene eigenvectors will become more and more dissimilar (Figure 4.6). But; if
we were to utilize an ‘average’ eigenvector, we would assume that although the lower
eigenvectors may no longer be as ‘close’ as before, that overall, the behavior would be
similar across all scenes that the average was taken from. When this comparison is made,
we see that the lower numbered eigenvectors remain similar and the higher numbered
eigenvectors become more dissimilar as expected. (Figures 4.7-8)
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Figure 4.6: Eigenvector Comparison for Two Scenes.
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Figure 4.7: Eigenvector Comparison Between the Average and One Scene.
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Figure 4.8: Eigenvector Comparison Between the Average and Multiple Scenes.
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From the randomly chosen scene comparisons above, it is clear that for the

particular data collections from Davis-Monthan, the average eigenvector up to number
six is an excellent approximation for all the scenes. It must also be noted that the first
three eigenvalues associated with the Davis-Monthan average account for 97.5 percent of

the total variance (Figure 4.9) and eigenvalues four and larger only comprise 2.5 percent

of the overall variance.

Figure 4.9: Eigenvector Comparison Between the Average and Multiple Scenes.

From analysis of the 16 data sets we can also conclude that the behavior of the
RGB eigenvector subset discussed in chapter three should also be similar. Comparison of

the average Davis-Monthan RGB eigenvectors with three random scene eigenvectors
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show that they are indeed similar. (Figure 4.10)
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Figure 4.10: RGB Eigenvector Comparison Between the Average and Multiple Scenes.

The next question to be investigated is whether or not these same sets of

eigenvectors can be applied to dissimilar scenes and still approximate the overall

behavior of the dissimilar scene.

C.

DISSIMILAR SCENE COMPARISONS

For a comparative analysis of the eigenvectors obtained from the Davis-Monthan

scenes, a data set from Jasper Ridge and a set from Lake Tahoe will be utilized. Jasper

Ridge was chosen because the data was obtained from a different sensor (AVIRIS) of the
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same class and the scene is dominated by vegetation. Lake Tahoe was chosen because it
is from a HYDICE collect which contains vegetation and a large section of water. Both
of these scenes contrast with Davis-Monthan in that they contain much more vegetation

and the background is not predominately sand.

The scene statistics of Jasper Ridge (Figure 4.11) and Lake Tahoe (Figure 4.12)
also follow the same general structure as Davis-Monthan. The significant differences of
note are that while the variance in the Davis-Monthan averages are highest between
bands 15-60, the variance is maximum between bands 40 and 60 for Jasper Ridge and 55-
70 for Lake Tahoe. Also of important note is the difference in the shape of the mean.
(Figure 4.13) The difference in shape around 700nm can be attributed to the chlorophyll

absorption spectrum that is characteristic of vegetation.

Figure 4.12: Scene Statistics for Lake Tahoe.
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Figure 4.13: Jasper Ridge and Lake Tahoe Mean Compared to Davis-Monthan Average.

With the exception of the wavelengths between 450nms and 750nms, the behavior of the
means for Jasper Ridge and Lake Tahoe correspond very closely to that of the Davis-
Monthan scene. From this we can conclude that the behavior of the first eigenvector will
also be similar in shape, with the exception of the chlorophyll absorption area, as shown
in Figure 4.14, even though the scene constituents are different. The comparison of
subsequent eigenvectors is not as simple as the first, because as noted earlier, as the
eigenvector number increases, the scene specifics will begin to dictate the behavior of the
eigenvector. Figure 4.14 depicts this behavior. Eigenvectors number one and two from
all three sets are similar in shape, however, starting with eigenvector number three, the

shapes begin to diverge significantly from the Davis-Monthan average.
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Figure 4.14: Jasper Ridge and Lake Tahoe Eigenvectors Compared to Davis-Monthan
Average.
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Although the first eigenvector is similar for all scenes, Jasper Ridge and Lake Tahoe’s
eigenvectors quickly begin to diverge from the Davis-Monthan average by eigenvector
number three. Also, both Jasper Ridge and Lake Tahoe’s eigenvectors are similarly
structured from the first eigenvector up through the fourth eigenvector. (The Davis-
Monthan scenes eigenvectors remained similarly structured up through eigenvector
number six. (Figure 4.8)) This would seem to indicate that the statistics of Jasper Ridge
and Lake Tahoe are more alike to each other than to the Davis-Monthan statistics and that

these scenes are from a class that does not include Davis-Monthan.

A comparison of the Davis-Monthan average RGB eigenvectors to Lake Tahoe
and Jasper Ridge yields similar results. (Figure 4.15) As expected, the first eigenvectors
which correspond to the overall scene color composition are nearly identical while the

next two eigenvectors diverge due to variances within the individual scenes.
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Figure 4.15: Jasper Ridge and Lake Tahoe RGB Eigenvectors Compared to Davis-
Monthan Average.
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D. APPLICATION OF AVERAGES

To test whether averages of the Davis-Monthan scenes could be applied to other
scenes, a subset of 13 data sets from the October 1995 collect were averaged to obtain the
PC transformation and RGB eigenvectors. These ‘global’ eigenvectors were then applied
to two different scenes to obtain the PCs, HSV and RGB transformed HSV images. The
first scene for comparison was also from Davis-Monthan, but collected during June 1995.
The second scene that the Davis-Monthan averages were applied to was the Lake Tahoe
data set. The Lake Tahoe data set was chosen for comparison because the data was also

collected with the HYDICE sensor, but is of a completely dissimilar scene background.

For comparison of the original PCs and PCs obtained with the ‘global’ statistics,
four scene images are presented. The first is the grayscale image of the first few
principal components. (Figures 4.16a/b and 4.17) The second is the direct RGB
representation of the principal components, including the variation of setting saturation to
one, value to one, and both saturation and value to one. (Figures 4.18a/b and 4.19a) The
third image set is the HSV transformation of the principal components, including setting
saturation to one, value to one, and both saturation and value to one. (Figures 4.20a/b
and 4.213./b)A The fourth set is the RGB transformation of the HSV image. (Figures

4.22a/b and 4.23a/b)

Upon inspection, the grayscale principal component images appear to be very
similar in content with only minor variations in scale. However, the direct RGB
comparisons clearly show differences, but the differences are similar in their pixel

locations, indicating that they contain the same scene information.
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(Scene Specific) PC1. Panel B is the Test (Average) PC1. Panel C is the Original (Scene
Specific) PC2. Panel D is the Test (Average) PC2.
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Figure 4.16b: Davis-Monthan and Test Transform PC Comparison. Panel A is the
Original PC3. Panel B is the Test PC3. Panel C is the Original PC4. Panel D 1s the Test
PC4. (Note that the test PC4 contains more variance than the original PC4.)
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Figure 4.17: Lake Tahoe and Test Transform PC Comparison. (Note that the higher
numbered test PCs contain more variance than their counterpart does.)
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PC1- Red, PC2 - Green, PC3 - 8lue

RGB Representation With §=1

RGB Representation With S=1

Figure 4.18a: Davis-Monthan Direct RGB Representation of Original PCs and Test PCs.
Panels A and C are from the Original Data. Panels B and D are from the Test Set.
(Note that with no a priori knowledge of the scene, panels A and B may be construed to
contain small lakes rather than fairways.)
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RGB Representation With V=1

RGB Representation With V=1

RGB Representation With V=8=1

W

RGB Representation With V=8=1

¢

Figure 4.18b: Davis-Monthan Direct RGB Representation of Original PCs and Test PCs.
Panels A and C are from the Original Data. Panels B and D are from the Test Set.
(Note the similarity between panels A and B, and C and D.)
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Original PCs Test Set PCs

PC1 - Red, PC2- Green, PC3 - Blue

PC1 - Red, PC2 - Green, PC3 - Blue

oreey e

RGB Representation With S=1 RGB Representation With S=1

RGB Representation With V=1

-~

RGB Representatlon With V=3=1 RGB Representation With V=8=1

Figure 4.19: Lake Tahoe Direct RGB Representation of Original PCs and Test PCs.
(Note the similarity of scene content.)
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HSV FROM COVARIANCE, COLOR RESHAPED

HSV FROM COVARIANCE, COLOR RESHAPED (TEST SET)

- - pun -

HSV FROM COVARIANCE, COLCR RESHAPED AND S=1

HSV FROM COVARIANCE, COLOR RESHAPED AND S=1 (TEST SET)

Figure 4.20a: Davis-Monthan HSV and Test HSV Comparison. Panels A and C are
from the Original Data. Panels B and D are from the Test Set.
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HSV FROM COVARIANCE, COLOR RESHAPED AND V=1

Figure 4.20b: Davis-Monthan HSV and Test HSV Comparison. Panels A and C are
from the Original Data. Panels B and D are from the Test Set.
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HSV FROM COVARIANCE, COLOR RESHAPED HSV FROM COVARIANCE, COLOR RESHAPED (TEST SET)

HSV FROM COVARIANCE, COLOR RESHAPED AND S=1 (TEST SET)

Figure 4.21a: Lake Tahoe HSV and Test HSV Comparison.

The images of Figure 4.20a panel A and 4.21a panel A makes it easier to view, as
compared with images like those in Figure 4.18a panel A and Figure 4.19 panel A.
Pixels that do not have a significant projection onto either PC2 or PC3 appear largely
desaturated. This makes the image easier to view because naturally occurring scenes tend
to be largely desaturated with low dimensionalities in the visible portion of the spectrum.
(Buchsbaum and Gottschalk,1983) Human observers are not used to examining images

with large regions of highly saturated hues that vary rapidly.
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HSV FROM COVARIANCE, COLOR RESHAPED AND V=1 HSV FROM COVARIANCE, COLOR RESHAPED AND V=1 (TEST SET)

HSV FROM COVARIANCE, COLOR RESHAPED AND V=S=1 HSV FROM COVARIANCE, COLOR RESHAPED AND V=8=1 (TEST SET)

S T e e e e — - SN

i

Figure 4.21b: Lake Tahoe HSV and Test HSV Comparison.

The image sets in which the saturation and values are set to one provides a way to
go back and forth between highly saturated and less saturated images to make material
classification more obvious. From these figures it is clear to see that while the colors of
the original PC and test PC sets may be different, the scene content remains the same and

visible.
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HSV FROM COVARIANCE, COLOR RESHAPED AND S=1 (TEST SET)

Figure 4.22a: Davis-Monthan RGB Transformed HSV and Test RGB Transformed HSV
Comparison. Panels A and C are from the Original Data. Panels B and D are from the
Test Set.
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HSV TRANSFORMED, COLOR RESHAPED AND V=1

HSV TRANSFORMED, COLOR RESHAPED AND V=8=1
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HSV FRCM COVARIANCE, COLOR RESHAPED AND V=8=1 (TEST SET)

Figure 4.22b: Davis-Monthan RGB Transformed HSV and Test RGB Transformed HSV
Comparison. Panels A and C are from the Original Data. Panels B and D are from the
Test Set.
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RGB Transformed RGB Transformed Test Set

HSV TRANSFORMED TRANSFORMED HSV, COLOR ROTATED (TEST SET)

Figure 4.23a: Lake Tahoe RGB Transformed HSV and Test RGB Transformed HSV
Comparison.

Figure 4.23 makes an interesting comparison between the RGB transformed
images. The images on the left which are directly transformed from their own scene
information clearly show the dominance of the ‘blue’ band corresponding to the high

amount of water represented in the scene while the images on the right which were
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transformed with the ‘global RGB eigenvectors maintains the appearance of the HSV

image.

RGB Transformed RGB Transformed Test Set

HSV TRANSFORMED, COLOR RESHAPED AND V=1 HSV FROM COVARIANCE, COLOR ROTATED AND V=1 (TEST SET)

HSV FROM COVARIANCE, COLOR ROTATED AND V=S=1 (TEST SET)

Figure 4.23b: Lake Tahoe RGB Transformed HSV and Test RGB Transformed HSV
Comparison.
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V.SUMMARY AND CONCLUSIONS

From analysis and comparison of the Davis-Monthan data to dissimilar scenes, it
is clear to see that for best analysis, it would be appropriate to maintain scenes such as
Davis-Monthan within one group and scenes such as Jasper Ridge and Lake Tahoe within
another group. But, for first order unsupervised classification, the first few eigenvalues
and associated eigenvectors which contain the largest amount of scene variance can
appropriately represent the scene. Figure 5.1 and Table 5.1 reinforce this by showing that
over 98 percent of scene variance is contained within the first three eigenvectors. In fact,
over 95 percent is located within the first two. Extending this concept further and
drawing upon the results in the previous sections, it is clear that a generalized ‘global’ set
of eigenvectors can appropriately depict any scene content. The average eigenvectors
investigated in this study provides such a basis and can be further improved upon with an

increase in the number of data sets utilized.

Eigenvalue plot from Covariance
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Figure 5.1: Jasper Ridge and Lake Tahoe Eigenvectors Compared to Davis-Monthan
Average.
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Eigenvalue| Davis-Monthan | Jasper Ridge | Lake Tahoe
1 0.8417 0.6164 0.8093
2 0.1159 0.3479 0.1629
3 0.0259 0.0271 0.0147
4 0.0056 0.0026 0.0092
5 0.0028 0.0019 0.0022
Table 5.1: Eigenvalues for Davis-Monthan Average, Jasper Ridge, and Lake
Tahoe.

Table 5.1 along with the figures in chapter four graphically depict the fact that the
first three eigenvectors are the most important in describing any scene. Referring back to
section 3C on color mapping strategies, it is clear that a combination of the first three
principal component transforms will appropriately depict any scene.

The principal component-based mapping strategy discussed previously provides
an easy way to perform first order unsupervised classification. The inclusion and
utilization of ‘global’ or generalized eigenvectors decreases the overhead required to
perform the first order classification and allows for ‘real time’ classification of
hyperspectral imagery. The resultant image is segmented spatially based on a
generalized projection of the radiance distribution in the PC2-PC3 plane. By visually
inspecting the resulting image, an analyst can then direct attention to appropriate areas of
the scene for further processing without the time consuming requirement of calculating
the scene specific statistics.

The PC and RGB transformation eigenvectors utilized in this study were derived
by averaging the scene statistics from 13 similar scenes. These ‘global’ or generalized
eigenvectors were then applied to a similar and dissimilar scene to observe the effect. It
1s clear that these eigenvectors appropriately allowed for first order classification and can

90




be applied to a broad range of spectral imagery classes. These eigenvectors can become
even more robust as the number of ‘averaged’ scenes is increased.

It was shown that the 1*' PC will always be related to the mean solar radiance, but
the 2™, 3™ and subsequent PCs depend on the specific contents of the image. However, it
was also shown that only the first three PCs are required for a color mapping
corresponding to human color vision. The remapping of the MATLAB colorspace in
chapter three provides an orthogonal mapping of the 'colors, but requires further
refinement of the colorspace. It remains to be investigated whether or not the RGB
transformation of the HSV image presented here can be arranged so that materials are
presented in a straightforward manner, i.e. water always mapped to blue, vegetation to
green, etc, vice having the dominant scene constituent set the base hue of the image. The
author believes that this mapping can be accomplished.

The presentation strategy discussed here is best suited to broad scale geographical
classiﬁcation,.not for identifying small, isolated targets. However, objects and variances
within the scene which occur only at a few pixels in an image and thus have little effect
on the overall covariance matrix and do not contribute significantly to the 2* and 3™ PCs,
appear to stand out and be discernable in this mapping strategy. For this reason, this
aspect of the mapping strategy merits further investigation.

The invariant display strategy and generalized eigenvectors presented here is
offered as a way to have a first look at a wide variety of spectral scenes. By. performing a
PC transformation with these eigenvectors and analyzing the three most significant PCs,

an initial classification decision can be made ‘real time’. Detailed investigation of the
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relationship between the PC eigenvectors and dissimilar image content shows that this

strategy is robust enough to provide an accurate initial scene classification.
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MATLAB CODE

Two MATLAB code files are scripted below. The first was utilized for conversion to
Band Interleave format and the second was utilized to generate the statistics and principal

components for analysis.

%***********************************************************************

%$This program will read in a 3-D Hyperspectral Data set from ENVI format

% by

% David I. Diersen
% October 2000
clear

%********-k***********k***************************************************

SHYPERSPECTRAL DATA FILE READER

o°

o

WRITTEN PRIMARILY FOR 'BSQ' BYTE ORDER 0-1 AND 'BIL' BYTE ORDER 0-1

o

THIS FIRST SECTION GETS THE NECESSARY INFO ON THE FILE TO PROCESSED

oe

o

filein=input (' What file do you want to process? ','s');
type=str2num(input ('What is the data type? (1,2,3,4,5,0r6) 'L's'));
if type ==

type=char ('int8");
elseif type==2
type=char('intl6"');
elseif type==3
type=char ('int32"');
elseif type==4 $Not dealing with 4, 5 and right now
type=char (float);
elseif type==5
type=char (doubleprecision);
elseif type==
type=char (complex) ;

else string(' You made a mistake, BOOM! ")

end

byte=str2num (input ('What is the byte order? (0=MS-DOS, 1=IEEE) 'y's'));
inter=str2num{input ('"What is the interleave type? (1=BSQ,2=BIP,3=BIL)
y's') ) '

l1=str2num (input (' What is the number of samples? ','s'})):;

%Obtains the size of original data

w=str2num (input (' What is the number of rows? ','s'"));
dim=str2num(input (' How many bands do you have? ','s'));
hdrsz=str2num (input (' How long is the header? ','s'));

%***********************************************************************

READ IN THE FILE

o

o

fidl=fopen(filein); %0Open the binary file
if inter== 3Works on BSQ format files
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if byte== $Byte order is 1
hdr=fseek (fidl, hdrsz, 'bof'); %Sets the pointer to right after
the header
tmp=fread(fidl, [1, (1*dim*w*2)], 'int8");
%Reads the data in 1 byte increments (Splits data in half)
tmp2=reshape (tmp, 2, (length (tmp)/2));
$These next three lines swaps bytes
tmp3=flipud (tmp2);
tmpd=reshape (tmp3, 1, length(tmp)); %Data is now in LSB-MSB order
fid2=fopen ('tempdata', 'w'); $Creates a temporary file
count=fwrite (fid2, tmp4, 'int8"');
$Writes the Byte swapped data to binary file ro reread as LSB-MSB

fid2=fopen ('tempdata'); $0pen the temp file
data=fread(fid2, [1, (1*w*dim) ], 'intl6'); %Reads the data as an
integer

dat=reshape (data,l,w,dim);
[1 ¢ d]l=size(dat)
for i=1:d
%Reorders and transposes data because of read in issues
AA(:,:,1)=dat(:,:,1)"';
end
fclose (£id2);

delete tempdata $Deletes the temporary read file

else $Byte order is 0
two_D_file=fread(fidl,[1,(l*dim*w)],type);
dat=reshape (two D file,l,w,dim);
[1 ¢ d]l=size(dat)
for i=1:d
$Reorders and transposes data because of read in issues, memory size
AA(:,:,i)=dat(:,:,1)":
end
end
elseif inter==
two D file=fread(£fidl, [1, (1*w*dim)], type);

elseif inter== $Works on BIL format files
if byte==1
fseek (fidl,hdrsz, 'bof'); $Sets the pointer to right after
the header
fid2=fopen('tempdata', 'w'); $Creates a temporary file
tmp=(flipud(fread(fidl, [2, (1*w*dim) /4], 'int8"')));

%Reads the data in 1 byte increments (Splits data up because of size)
posit=ftell (fidl);
fwrite (£id2, tmp, 'int8');
clear tmp
fseek (fidl,posit, 'bof'); i
$This could/should be shortened with a "for" loop
tmp=(flipud(fread(fidl, [2, (1*w*dim) /4], 'int8"')));
clear posit
posit=ftell (£id2);
fseek (fid2,posit, "bof');
fwrite(£fid2, tmp, 'int8"');
clear tmp :
tmp=(flipud(fread(£fidl, [2, (1*w*dim) /4], 'int8')));
fwrite (£id2, tmp, 'int8');
clear tmp
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tmp=(flipud(fread(fidl, [2, (1*w*dim) /4], 'int8")));
fwrite (£id2, tmp, 'int8');
clear tmp

fid2=fopen('tempdata'); $Open the temp file

for i=l:w/4 %$Reads the file into a concatonated 2-D matrix
x1 (i, :)=fread(£fid2, [1, (1*dim)], "intl6"');

end

save X x1

clear i x1

for i=1l:w/4 %Reads the file into a concatonated 2-D matrix
x2(i,:)=fread(£fid2, (1, (1*dim)], "intlé");

end

save Y x2

clear 1 x2

for i=1:w/4 $Reads the file into a concatcnated 2-D matrix
x3 (i, :)=fread(fid2, [1, (1*dim)], 'intl6");

end

save XX x3

clear i x3

for i=l:w/4 %Reads the file into a concatonated 2-D matrix
x4 (i, :)=fread(£id2, [1, (1*dim)], "intl6"');

end

save YY x4

clear i x2

fclose (£id2);

delete tempdata

load X

load Y $Correctly saved

load XX

load YY

fid3=fopen('tempdata', 'w'); %Creates a temporary file

for i=1: (1*dim)

fwrite (fid3,x1(:,1i), 'intl6");
fwrite (£fid3,x2(:,1i), 'intlé");
fwrite (£id3,x3(:,1i), "intlée");
fwrite (£id3,x4(:,1i), 'intlé');

end
clear x1 x2 x3 x4
fclose (£fid3);
fidd4=fopen('tempdata');
Ab=fread(fid4, [w, {(1*dim) ], 'intl6");
AA=reshape (RA,w,1,dim);
fclose(fidd);
delete tempdata
clear £fid2 fid3 fid4 hdr tmp tmp2 tmp3 tmpd4 count X Y
else :
two D file=fread(fidl, [1, (1*w*dim)], type);
dat=reshape(two D file,l*dim,w);
tmp=dat’;
AA=reshape (tmp, 1,w,dim) ; %Resizes the file into correct bands
and size
AR=reshape (RA,w, 1,dim);
end
end
fclose (£idl);
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clear type 1 w dim fidl inter i c d byte count dat data hdrsz posit

%***********************************************************************

% THE OUTPUT OF THE ABOVE BLOCK IS THE HYPERSPECTAL DATA CUBE LABELED AA
O sk koot sk sk o sk ok RSk AR R RS kR R RS SRRS RR R R SSk kK

%This section takes in the 3-D data set (AA) and processes the stats
% (Mean, Covariance, Correlation, Eigenvalues, Eigenvectors, and
Principal Components)

Q
°

clear
load crflOm0l2origdata $DATA IN MATLAB FORMAT

save tmp2 AA

%

Qdkdhhkddkhkkkhkkh kb hk ok kb hkdkhkh ks kb khhkhhkdhdhhkhkhkhkhhdkhhhdhhhkhdhhdhkhkbhhddhhhhhrkkx

[1 ¢ d]=size(AA); %Obtains the # rows, columns, and bands
N=1l*c; $Number of pixels in the scene
% FIND THE MEAN
for i=1:d $Applied for each band
mean_(i)=(1/N)* (sum(sum(BA(:,:,1i))});
$Finds the mean for each band, vector form
end
mean_=mean_'; $Mean into column form

save stats2 mean_
% SUBTRACT THE MEAN FROM EACH BAND

for i=1l:d

AA(:,:,1)=(AA(:,:,i)-mean_ (i));
$Subtracts the mean from each band and replaces AA
end

clear i x
%The above works well and fast. Now working by pixels, slows down

% FIND THE CORRELATION AND COVARIANCE MATRIX

k=1; ~%Initialize the pixel count
Cov=zeros(d,d); %$Initialize covariance matrix
Auto_Corr=zeros(d,d); $Initialize Auto Correlation matrix
for i=1:N
gRun for each pixel THIS TAKES A LONG, LONG, LONG TIME.....
z=k: (1l*c): (1l*c*d);
cov=((1l/(N-1)).*(RA(z) '*AA(z))); %Normalized pixel covariance
corr=((AA(z)')+mean_ )*{(AA(z)+(mean_')); %Adds mean back in
%$Get the Auto correlation at the same time E[(x) (x) ']
Cov=Cov+cov; $Summing over entirety
Auto_Corr=Auto Corrt+corr; gSumming over entirety
clear cov corr
k=k+1; $Advances pixel
end

save stats2 Cov Auto_Corr -append
clear AA i j k tmp z mean_
[S_C Eval Evect]=svd(Cov); $SVD decomp to get evals and evectors

save stats2 S_C Eval Evect -append %Save stats to save memory
clear S_C Eval Evect

oo

NOW GET THE CORRELATION MATRIX WITH COEFFICIENTS

oo

oo

D=(diag(Cov))* (diag(Cov))';
$Use the diagonal of the cov matrix to get the denominator of corr
matrix
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for i=1l:length(Cov)”"2

Corr(i)=(Cov(i))/sgrt(D(i)); $Builds Correlation vector

end $Next reshapes correlation matrix
Corr=reshape (Corr, sqrt (length (Corr)),sart (length(Corxr))):;

[S Corr Eval Corr Evect_Corr]l=svd(Corr);

$SVD decomp to get evals and evectors of the Correlation matrix
clear x 1 D1 c d

save stats2 Corr S Corr Eval Corr Evect Corr -append

clear Corr S_Corr Eval Corr Evect_Corr Cov

e

ow

NOW THE DECOMPOSITION OF E[x*x']

oo

[S_AC Eval AC Evect_ AC]=svd(Auto_Corr);
$SVD decomp to get evals and evectors
save stats2 S AC Eval AC Evect_ AC -append
clear Auto Corr S_AC Eval AC Evect AC

%************‘k*'k****************7‘(***************************************

o

¢ This section will find the principal components, pixel by pixel

o°

clear

load stats2 $Loads the statistics file

load tmp2 $Loads the MATLAB format original data
[1,c,d]=size(AA); $Rows, columns and dim of orig data
k=1;

N=(1l*c);

for i=1:N %Run for each pixel, THIS TAKES A LONG, LONG TIME.....
z=k: (1l*c): (1l*c*d);
AA(z)=(Evect')*(RA(z)'); %Transform from covariance
k=k+1; '
end
PC=AA; $Creates principal component transform variable
clear AA
i=1:25;
PCs(:,:,1)=PC(:,:,1);%0nly want the first 25 Principal components
clear PC
PC=PCs;
save xformsz PC $Saves to a MATLAB file
clear PC i k z AA
clear $Clears to keep memory from becoming full
load stats?2 %As above
load tmp2
[1,c,d]l=size(AR); %Rows, columns and dim of orig data
k=1;
N=(1l*c);
for i=1:N $Run for each pixel, THIS TAKES A LONG TIME.....
z=k: (1l*c): (1l*c*d);
BAA(z)=(Evect Corxr')*(AA(z)');%Transform from coefficients
k=k+1;
end
PC_R=AA;
clear AA
i=1:25;
PCs(:,:,1)=PC_R(:,:,1);%0nly want the first 25 transforms
clear PC_R
PC_R=PCs;
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save xforms2 PC_R -append %Saves the transfom from coefficients
clear PC_R 1 k z AA

clear ¢Make more memory room

load stats2

load tmp?2

[1,c,d])=size(AA); %Rows, columns and dim of orig data

k=1;

N=(1l*c);

for i=1:N %$Run for each pixel, THIS TAKES A LONG TIME.

z=k: (1*c): (1l*c*d);
AA(z)=(Evect AC')*(AA(z)'); %Transform from E[xx']
k=k+1;
end
PC_AC=RA;
clear ARA
i=1:25;
PCs(:,:,1)=PC_AC(:,:,1); $0nly want the first 25 transforms
clear PC_AC
PC_AC=PCs;
save xforms2 PC_AC -append
clear PC AC 1 k z AR c d N ,
%*****************************************************************
Outputs three files, tmp2 which is the original data file, stats2 %
which is the statistics from the three methods, and xforms2 which is

the first 25 bands of the principal component transforms.
vk Feok ke e ke T e ke Tk e Tk ke Sk ok S sk ok T ok ke Sk ok S ok sk ok ok gk ke ok e Sk e ok Sk ke ke ke sk sk sk sk ke ok sk sk ok e ok sk ok ok ok ok ok ke ok ke ok ok

o o0 oP

oo
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